Архитектура ЭВМ. Лекция 9




НазваниеАрхитектура ЭВМ. Лекция 9
страница1/3
Дата публикации17.10.2016
Размер9,76 Kb.
ТипЛекция
dopoln.ru > Информатика > Лекция
  1   2   3
Архитектура ЭВМ. Лекция 9.

Содержание:

Принтеры

Сетевые карты

Сетевые топологии

Модемы

ADSL
Часть 1. Принтеры.
Предлагается классифицировать принтеры по пяти основным позициям: принципу работы печатающего механизма, максимальному формату листа бумаги, использованию цветной печати, наличию или отсутствию аппаратной поддержки языка PostScript, а также по рекомендуемой месячной нагрузке, которая, как правило, коррелирует со скоростью печати.
любое текстовое или графическое изображение на экране монитора компьютера (как, впрочем, и теле­визора) состоит из множества дис­кретных точек люминофора, име­нуемых также пикселами (pixel - picture element). Поэтому такие дисплеи называют еще растровыми. В мониторе имеются три электронных пуш­ки с отдельными схемами управ­ления, а ни поверхность экрана нанесен люминофор трех основ­ных цветов: К. (Red, красный), G (Green, зеленый), В (Blue, си­ний). Эти цвета называются обыч­но первичными, поскольку путем сложения соответствующего их ко­личества можно получить любой другой цвет. Такая модель цветообразования называется поэтому аддитивной (adtlition - сложение), или RGB.

Принтеры, способные выводить графическую информацию, являют­ся, вообще говоря (так же как и упоминаемые выше мониторы), растровыми устройствами. Однако работают они уже с другими пер­вичными цветами и используют соответственно иную модель пветообразования - субтрактивную (subtraction - вычитание). Это, во­обще говоря, может создавать боль­шие проблемы при выводе инфор­мации с экрана на принтер, пос­кольку не всегда достигается пол­ное соответствие цветов.
первичными цветами для цветных принтеров являются зеле­но-голубой (Cyan), светло-красный (Magenta) и желтый (Yellow). На­ложение двух из этих первичных цветов в данном случае дает красный, зеленый или голубой цвет. Смешение всех трех первичных цветов субтрактивной модели дает черный цвет. В некоторых принте­рах для получения истинно черного цвета используется отдельный чер­ный краситель (blacK), поэтому данная модель цветообразования называется также CMY или CMYK.

Поясним, почему, собственно, различаются модели цветообразования для мониторов и принтеров. Напомним, что наши глаза являются сложной оптической системой, ко­торая воспринимает излучаемый или уже отраженный от освещае­мых предметов свет, разумеется, если они сами его не излучают. Цвет, как известно, определяется длиной волны электромагнитного излучения, определенный частот­ный спектр которого и представляет для нас видимый свет. Теперь не­трудно понять, что нанесенные на экран точки люминофора воспри­нимаются именно того цвета, ка­кой они и излучают. Краситель же, нанесенный на бумагу, напротив, действует как фильтр, поглощая (вычитая!) одни и отражая другие длины электромагнитных волн. Напомним также, что насыщенность цвета (розовый, красный, пурпур­ный) зависит от количества бело­го цвета. Таким образом, промежу­точные цвета при выводе изобра­жения, например, розового, полу­чаются, как правило, путем пропус­ка (непечати) нескольких точек.
Основные типы печатающих устройств:

  • Dot Matrix

Рассказать коротко.

  • Liquid ink-jet

    • устройства непрерывного (continuous drop, continuous jet)

    • дискретного (drop-on-demand)

      • с нагревани­ем чернил («пузырьковая» техноло­гия bubble-jet или thermal ink-jet)

в каждом сопле печатающей головки находится маленький нагреватель­ный элемент (например, тонкопленочный резистор). При пропуска­нии тока через тонкопленочный резистор

последний за несколько микросекунд нагревается до темпе­ратуры около 500 градусов и отда­ет выделяемое тепло непосредствен­но окружающим его чернилам.

      • и основанные на действии пьезо- эффекта (piezo).

обратный пьезоэффект заключается в дефор­мации пьезокристалла под воздей­ствием электрического поля. Изме­нение размеров пьезоэлемента, рас­положенного сбоку выходного от­верстия сопла и связанного с диа­фрагмой, приводит к выбрасыванию капли и приливу через входное от­верстие новой порции чернил.

  • Термоперенос. Thermal wax transfer.

Принцип работы принтера с термопереносом состоит в том, что термопластичное красящее вещес­тво, нанесенное на тонкой подложке, попадает на бумагу именно в том месте, где нагревательными элемен­тами (аналогами сопел и игл) пе­чатающей головки обеспечивается должная температура (около 70-80 градусов). Конструктивно такой способ печати достаточно прост, к тому же он обеспечивает практичес­ки бесшумную работу. Для нанесе­ния цветного изображения требу­ется, разумеется, три или четыре прохода: по одному для первичных цветов и один в случае использо­вания отдельного черного цвета, что соответственно увеличивает время печати. Принтеры, использующие данную технологию, обычно требу­ют специальной бумаги. Стоимость выведенной страницы с изображе­нием, как правило, дороже, чем для струйных принтеров. Для данных устройств также характерна неболь­шая скорость печати (1-2 страни­цы в минуту). Тем не менее, прин­теры с термопереносом - достаточ­но надежные устройства, которые не требуют сложного обслуживания и могут воспроизводить цветное изображение (до 16,7 миллионов цветов) как на пленке, так и на бу­маге, с разрешающей способностью 200-300 dpi (точек на дюйм).


  • Dye sublimation

Эта HI-END технология наиболее близка к тех­нологии термопереноса, только эле­менты печатающей головки нагре­ваются в данном случае уже до тем­пературы около 400 градусов. Хотя, возможно, термин «термосублимация» не очень удачен, но он достаточно четко поясняет, каким образом красящему веществу пере­дается необходимая порция энер­гии сублимации. Напомним, что под сублимацией понимают пере­ход вещества из твердого состояния в газообразное минуя стадию жид­кости (например, кристаллы йода сублимируют при нагревании). Та­ким образом, порция красителя сублимирует с подложки и осажда­ется на бумаге или ином носителе. В принтерах с термосублимацией красителя имеется возможность точ­ного определения необходимого количества красителя, переносимого на бумагу (например. 19% суаn, 65% magenta, 34% yellow). Комбинацией цветов красителей можно подобрать практически любую цветовую па­литру.


  • Phase change ink-jet. (твердый краситель).

Принцип работы таких устройств примерно следующий. Восковые стерженьки для каждого первичного цвета красителя постепенно рас­плавляются специальным нагрева­тельным элементом при температу­ре около 90 градусов и попадают в отдельные резервуары.

Расплавлен­ные красители подаются оттуда спе­циальным насосом в печатающую головку, работающую обычно на основе пьезоэффекта. Капли воскообразного красителя на бумаге застывают практически мгновенно, но обеспечивают необходимое с ней сцепление. В отличие от обычной технологии liquid ink-jet, в данном случае не происходит ни просачива­ния, ни растекания, ни смешения красителей. Именно поэтому прин­теры, использующие технологию

phase change ink-jet, работают с любой бумагой. Качество цветов получается просто превосходное, к тому же допустима и двусторонняя печать. Стоимость одной копии весьма невысока, как впрочем и скорость печати (около 2 страниц в минуту).


  • Colour laser.

используется электрографический принцип со­здания изображения - примерно такой же, как и в копировальных машинах. Наиболее важными час­тями лазерного принтера можно считать фотопроводящий барабан (или ленту), полупроводниковый лазер и прецизионную оптико-ме­ханическую систему, перемещаю­щую луч. Лазер формирует электронное изображение на светочувствительной фотопримной ленте последовательно для каждого цвета тонера (CMYK). То есть принтер, работающий в монохромном режиме со скоростью 8стр/мин, в цветном режиме обеспечит только 2 стр/мин. Когда изображение на фоточувствательной ленте полностью построено, подаваемый лист заряжается таким образом, чтобы тонер с барабана притягивался к бумаге. После этого изображение закрепляется на ней за счет нагрева частиц тонера до температуры плавления. Окончательную фиксацию изображения осуществляют специальные валики, прижимающие расплавленный тонер к бумаге.

^ Часть 2. Сетевая плата.

Сетевая плата (также известная как сетевая карта, сетевой адаптер, Ethernet-адаптер, NIC (англ. network interface card)) — печатная плата, позволяющая взаимодействовать компьютерам между собой, посредством локальной сети.

Топология - физическая или электрическая конфигурация кабельного хозяйства и соединений сети.
Топология - это скелет сети.
Существует несколько основных типов:

  • Общая Шина ( Bus)

  • Звезда ( Star )

  • Кольцо (Ring )

  • Древовидная ( Tree )

  • Топология, когда все элементы напрямую соединены друг с другом (Mesh)


Сетевые платы характеризуются своей

    • Разрядностью: 8 бит (самые старые), 16 бит и 32 бита. Следует ожидать появления 64 бит сетевых карт (если их уже не выпустили).

    • Шиной данных, по которой идет обмен информацией между материнской платой и сетевой картой: ISA, EISA, VL-Bus, PCI и др.

    • Микросхемой контроллера или чипом (Chip, chipset) , на котором данная плата изготовлена. И который определяет тип используемого совместимого драйвера и почти все остальное : разрядность, тип шины и т.д.

    • Поддерживаемой сетевой средой передачи (network media) , по-русски сказать: установленными на карте разъемами для подключения к определенному сетевому кабелю. BNC для сетей 10Base-2, RJ45 для сетей 10Base-T и 100Base-TX, AUI для сетей 10Base-5 или разъемы для подключения к волоконной оптике.

    • Скоростью работы: Ethernet 10Mbit и/или Fast Ethernet 100Mbit, Gigabit Ethernet 1000Base-..

    • Также, карты на витую пару могут поддерживать или не поддерживать FullDuplex- ный режим работы.

    • MAC- адресом

При работе сетевые адаптеры просматривают весь проходящий сетевой трафик и ищут в каждом пакете свой MAC-адрес. Если таковой находится, то устройсво (адаптер) декодирует этот пакет. Существуют также специальные способы по рассылке пакетов всем устройствам сети одновременно (broadcasting).

Каждый производитель присваивает адреса из принадлежащего ему диапазона адресов. Первые три байта адреса определяют производителя.

BootROM


Микросхема ПЗУ "BootROM" предназначена для загрузки операционной системы компьютера не с локального диска, а с сервера сети. Таким образом, можно использовать компьютер, вовсе не имеющий установленных дисков и дисководов. Иногда это полезно с точки зрения безопасности (ни принести, ни унести), иногда с точки зрения экономии. Для установки BootROM на сетевой карте предусмотрена панелька под Dip корпус. Микросхема загрузки должна соответствовать сетевой карте.
^ ^

Адреса и прерывания


Адрес ввода вывода (In/Out Port, Address) - область памяти компьютера, задаваемая в шестнадцатиричном виде (начало области), через которую производится обмен данными с устройством.

^ Стандартные адреса ввода/вывода (I/O Ports)

Адрес

Устройство

3F8

Последовательный порт COM1

2F8

Последовательный порт COM2

3E8

Последовательный порт COM3

2E8

Последовательный порт COM4

378

Параллельный порт LPT1

278

Параллельный порт LPT2

IRQ - Interrupt ReQuest - прерывание или запрос на прерывание.

^ Стандартно используемые прерывания (IRQ)

Номер прерывания

Устройство

0

Таймер

1

Клавиатура

2

Каскадирование

3

Последовательный порт COM2

4

Последовательный порт COM1

5

можно использовать

6

Контроллер дисководов FDD

7

Параллельный порт LPT1

8

Системные часы

9

 

10

можно использовать

11

можно использовать

12

часто использует Мышь PS/2

13

Математический сопроцессор

14

Контроллер1 HDD

15

Контроллер2 HDD



На плате сетевой карты располагаются штырьки контактов и перемычки, переставлением которых и производится настройка сетевой платы на нужный адрес и прерывание. Описание правильного положения перемычек должно быть в прилагаемой инструкции или нанесено на плату.
Стандарт Ethernet был разработан в 70-х годах в исследовательском центре PARC корпорации XEROX.
В некоторых работах отмечается, что "Ethernet" - марка, зарегистрированная XEROX.
Затем он был доработан совместно DEC, Intel и XEROX (отсюда идет сокращение DIX) и впервые опубликован как " Blue Book Standart" для Ethernet1 в 1980 г.. Этот стандарт получил дальнейшее развитие и в 1985 г. вышел новый - Ethernet2 (извесный также как DIX).

IEEE 802.3 был одобрен в 1985 году для стандартизации комитетом по LAN IEEE (Institute of Electrical and Electronics Engineers ) и вышел под заголовком: "IEEE 802.3 Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications."
Этот стандарт устанавливает общие правила по передаче данных в локальных сетях .

Ethernet и IEEE802.3 описывают схожие технологии. Обе являются CSMA/CD локальными сетями. Обе технологии являются широковещательными технологиями. Другими словами, все станции видят все фреймы (frame), даже если они предназначены не для этой станции. Каждая станция должна проверять полученный фрейм для определения, является ли она, эта станция, пунктом назначения. Если это так, то фрейм передается протоколу более высокого уровня для соответсвующей обработки.

Различие между Ethenet и IEEE 802.3 незначительное.

Обе и Ethernet и IEEE 802.3 встроены в железо (hardware).

IEEE 802.3 определяет несколько различных физических уровней, в то время как Ethernet - один.

Каждый физический уровень IEEE 802.3 имеет название , которое отражает его характеристики.
Например: 10Base5
10 - скорость локальной сети в Мегабитах в секунду
Base = baseband или Broad = broadband
5 - длина сегмента в сотнях метров ( в данном случае 500)

Коаксиальный кабель (от латинского co - совместно и axis - ось), представляет собой два соосных гибких металлических цилиндра, разделенных диэлектриком.

1- центральный провод (жила)
2- изолятор центрального провода
3- экранирующий проводник (экран)
4- внешний изолятор и защитная оболочка


^ ^

Разъемы Thin Ethernet


Розетка (мама)

Разъем, расположен
на сетевой карте




^ ^

Неэкранированная витая пара
(Unshielded Twisted Pair)


Кабель "Twisted Pair" - "Витая паpа", состоит из "паp" пpоводов, закpученных вокpуг дpуг дpуга и одновpеменно закpученных вокpуг дpугих паp, в пpеделах одной оболочки. Каждая паpа состоит из пpовода, именуемого "Ring" и пpовода  "Tip". ( Hазвания пpоизошли из телефонии). Каждая паpа в оболочке имеет свой номеp, таким обpазом, каждый пpовод можно идентифициpовать как Ring1, Tip1, Ring2, Tip2, ... .
Согласно стандартам, провод делится на несколько категорий по своей "пропускной способности":

Category 1 (Cat.1)

Используется для телефонных коммуникаций и не подходит для передачи данных

Cat.2

Используется для передачи данных со скорость до 4 Мбит в секунду (Mbps) включительно.

Cat.3

Используется для передачи данных со скорость до 10 Мбит в секунду (Mbps) включительно. Применяется в сетях 10Base-T

Cat.4

Используется для передачи данных со скорость до 16 Мбит в секунду (Mbps) включительно. Применяется в сетях Token Ring

Cat.5

Используется для передачи данных со скорость до 100 Мбит в секунду (Mbps) включительно. Применяется в сетях 100Base-TX и других, требующих такую скорость.



^ Предварительные (draft) стандарты

Тип провода

^ Область применения

Cat.5+

Сертифицирован для частоты до 300 МГц включительно. (IEC 46 Commity draft)

Cat.6

Сертифицирован для частоты до 600 МГц включительно. (DIN 44312-5 Draft)


Вилка "RJ-45" похожа на вилку от импортных телефонов, только немного большего размера и имеет восемь контактов.

^ ^

Hub (хаб)


В хабах под витую пару используются порты MDI-X типа, что позволяет подключать компьютеры напрямую. Для соединения хабов между собой один из его портов имеет разводку MDI. Этот порт каким-либо образом выделен на корпусе устройства. Применяются различные названия: "Cascading" или "In", или "Cross-over", или "Uplink".


  1   2   3

Похожие:

Архитектура ЭВМ. Лекция 9 iconЛекция. Архитектура микропроцессора лекция. Архитектура микропроцессора
Потребитель, воспринимает мп как нечто цельное, имеющее внешние потребительские свойства, заложенные в его архитектуру
Архитектура ЭВМ. Лекция 9 iconЛекция I и проблема языка и сознания лекция II 31 слово и его семантическое...
Монография представляет собой изложение курса лекций, про* читанных автором на факультете психологии Московского государственного...
Архитектура ЭВМ. Лекция 9 iconПонятие архитектуры. Архитектура системы команд
В широком смысле архитектура охватывает понятие организации системы, включающее такие высокоуровневые аспекты как систему памяти,...
Архитектура ЭВМ. Лекция 9 iconЛекция Введение 1 Лекция Тема «Основные элементы компьютерных технологий»
Лекция Тема «Особенности внедрения компьютерных технологий в зависимости от комплектации учебного заведения техническим и программным...
Архитектура ЭВМ. Лекция 9 iconCisc процессоры и risc процессоры
К процессорам этого класса относятся микропроцессоры: Intel 80286 (24 битная архитектура), 80386 (32 битная архитектура), 80486 (32-битовые...
Архитектура ЭВМ. Лекция 9 iconТема «Архитектура России»
Основным содержанием изучения изобразительного искусства в 8-ом классе в IV четверти является архитектура и декоративное искусство...
Архитектура ЭВМ. Лекция 9 iconЛекция, ее роль и место в вузе. Вузовская лекция главное звено дидактического...
Совершенствование знаний, формирование умений и навыков: семинар, спецсеминар, практикум, лабораторная работа, самостоятельная работа,...
Архитектура ЭВМ. Лекция 9 iconЛекция №1
Лекция № Общие принципы эффективной организации учебного процесса. Физиологиче­ская цена учебных нагрузок
Архитектура ЭВМ. Лекция 9 iconЛекция Лекция
Круглый стол: Как сегодня живёт импульс, данный Рудольфом Штайнером в 1912-1913 годах?
Архитектура ЭВМ. Лекция 9 iconЛекция №1
Лекция № Общие принципы эффективной организации учебного процесса. Физиологиче­ская цена учебных нагрузок
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
dopoln.ru
Главная страница