31. Показатели формы распределения (показатель асимметрии, эксцесса)




Название31. Показатели формы распределения (показатель асимметрии, эксцесса)
Дата публикации17.10.2016
Размер9,76 Kb.
ТипДокументы
31. Показатели формы распределения (показатель асимметрии, эксцесса).

Существует еще одна характеристика распределения данных, полученных по непрерывным шкалам, которую исследователь тоже должен обязательно учитывать. Это форма распределения.

Данные распределения старшеклассников по возрасту являются примером нормального распределения. Нормальным является такое распределение, при котором кривая построенного по его данным графика представляет собой колоколообразную симметричную кривую.

Например, если мы построим график по данным распределения старшеклассников по возрасту, то получим соответствующую колоколообразную кривую. Если же мы построим график по массиву третьеклассников и учителей, опрошенных в одной школе, мы получим две кривые. Нормальное распределение — это теоретическая кривая. Практически любые эмпирические данные в той или иной степени отклоняются от нормального распределения вероятностей, закону которого подчиняются распределения случайных величин. Но поскольку все расчеты, включающие значение среднего арифметического и стандартного отклонения, основаны на теории вероятности, в аналитическую задачу исследователя входит оценка (по крайней мере, приблизительная) того, насколько правомерно использовать данный тип анализа к полученным результатам. Поэтому даже на уровне описания (не говоря уже о множественном анализе), прежде чем приводить данные по их средним значениям (среднее арифметическое и стандартное отклонение), необходимо оценить характер формы распределения — в какой степени она приближается к нормальному распределению.

Для этого используют показатели скоса (асимметрии, skewness) и эксцесса (kurtosis). В скобках указываются термины, которые обычно у разных авторов используются для обозначения одних и тех же понятий. В частности, здесь приведены англоязычные обозначения рассматриваемых характеристик, которые приводятся в компьютерной программе обработки и анализа социологических данных — SPSS.

Показатель скоса (skewness) позволяет оценить степень и направленность асимметрии кривой распределения. В случае идеального нормального распределения асимметрия равна нулю.

В эмпирической социологии идеальные нормальные распределения практически не встречаются. Но существуют методы оценки степени приближения полученного распределения к нормальному. Коэффициент скоса имеет числовое значение и знак, указывающий направленность скоса. Чем больше величина отличается от нуля, тем большая асимметрия у полученного распределения, и, соответственно, большая погрешность может проявиться при применении коэффициентов статистического анализа, формула которых включает значения стандартного отклонения.

Существуют специальные процедуры оценки степени допустимости такой погрешности, а также искусственной нормализации шкалы. Исследователь может, при необходимости, осуществлять преобразование данных. С различными способами преобразования данных можно ознакомиться в специальной справочной и учебной литературе; но исследователю необходимо обязательно оценить степень асимметрии. (Простейшим косвенным показателем, указывающим на асимметрию, является расхождение между значениями среднего арифметического, моды и медианы; при идеальном нормальном распределении все три показателя равны).

Показатель эксцесса (kurtosis) показывает, в какой степени «крутизна» полученной кривой приближается к нормальному распределению.

Показатели асимметрии и эксцесса необходимы исследователю в первую очередь для того, чтобы он мог установить — в какой степени в анализе может быть использовано стандартное отклонение.
^ 32. Кривые распределения. Критерии согласия

Основной целью анализа вариационных рядов является выявление закономерности распределения, исключая при этом влияние случайных для данного распределения факторов. Этого можно достичь, если увеличивать объем исследуемой совокупности и одновременно уменьшать интервал ряда. При попытке изображения этих данных графически мы получим некоторую плавную кривую линию, которая для полигона частот будет являться некоторым пределом. Эту линию называют кривой распределения.

Иными словами, кривая распределения есть графическое изображение в виде непрерывной линии изменения частот в вариационном ряду, которое функционально связано с изменением вариант. Кривая распределения отражает закономерность изменения частот при отсутствии случайных факторов. Графическое изображение облегчает анализ рядов распределения.

Известно достаточно много форм кривых распределения, по которым может выравниваться вариационный ряд, но в практике статистических исследований наиболее часто используются такие формы, как нормальное распределение и распределение Пуассона.

При помощи этой формулы мы получаем теоретическое (вероятностное) распределение, заменяя им эмпирическое (фактическое) распределение, по характеру они не должны отличаться друг от друга.

Тем не менее в ряде случаев, если вариационный ряд представляет собой распределение по дискретному признаку, где при увеличении значений признака х частоты начинают резко уменьшаться, а средняя арифметическая, в свою очередь, равна или близка по значению к дисперсии (), такой ряд выравнивается по кривой Пуассона

Кривую Пуассона можно выразить отношением



где Px - вероятность наступления отдельных значений х; - средняя арифметическая ряда.

При выравнивании эмпирических данных теоретические частоты можно определить по формуле



где f' - теоретические частоты; N - общее число единиц ряда.

Сравнивая полученные величины теоретических частот f' c эмпирическими (фактическими) частотами f, убеждаемся, что их расхождения могут быть весьма невелики.

Объективная характеристика соответствия теоретических и эмпирических частот может быть получена при помощи специальных статистических показателей, которые называют критериями согласия.

Для оценки близости эмпирических и теоретических частот применяются критерий согласия Пирсона, критерий согласия Романовского, критерий согласия Колмогорова.

В том случае, если отсутствуют таблицы для оценки случайности расхождения теоретических и эмпирических частот, можно использовать критерий согласия В.И. Романовского КРом , который, используя величину , предложил оценивать близость эмпирического распределения кривой нормального распределения при помощи отношения



где m - число групп; k = (m - 3 ) - число степеней свободы при исчислении частот нормального распределения.

Если вышеуказанное отношение < 3, то расхождения эмпирических и теоретических частот можно считать случайными, а эмпирическое распределение - соответствующим нормальному. Если отношение > 3, то расхождения могут быть достаточно существенными и гипотезу о нормальном распределении следует отвергнуть.

Критерий согласия А.Н. Колмогорова используется при определении максимального расхождения между частотами эмпирического и теоретического распределения, вычисляется по формуле



где D - максимальное значение разности между накопленными эмпирическими и теоретическими частотами; - сумма эмпирических частот.

По таблицам значений вероятностей - критерия можно найти величину , соответствующую вероятности Р. Если величина вероятности Р значительна по отношению к найденной величине , то можно предположить, что расхождения между теоретическим и эмпирическим распределениями несущественны.

Необходимым условием при использовании критерия согласия Колмогорова является достаточно большое число наблюдений (не меньше ста).
^ 33. Понятие нормального распределения. Графическое изображение. Свойства.

Нормальное распределение зависит от двух параметров: средней арифметической и среднего квадратического отклонения . Его кривая выражается уравнением



где у - ордината кривой нормального распределения; - стандартизованные отклонения; е и π - математические постоянные; x - варианты вариационного ряда; - их средняя величина; - cреднее квадратическое отклонение.

Если нужно получить теоретические частоты f' при выравнивании вариационного ряда по кривой нормального распределения, то можно воспользоваться формулой



где - сумма всех эмпирических частот вариационного ряда; h - величина интервала в группах; - среднее квадратическое отклонение; - нормированное отклонение вариантов от средней арифметической; все остальные величины легко вычисляются по специальным таблицам.
^ 34. Вычисление критерия согласия Пирсона.

Наиболее распространенным является критерий согласия К. Пирсона , который можно представить как сумму отношений квадратов расхождений между f' и f к теоретическим частотам:



Вычисленное значение критерия необходимо сравнить с табличным (критическим) значением. Табличное значение определяется по специальной таблице, оно зависит от принятой вероятности Р и числа степеней свободы k (при этом k = m - 3, где m - число групп в ряду распределения для нормального распределения). При расчете критерия согласия Пирсона должно соблюдаться следующее условие: достаточно большим должно быть число наблюдений (n >=50), при этом если в некоторых интервалах теоретические частоты < 5, то интервалы объединяют для условия > 5.

Если , то расхождения между эмпирическими и теоретическими частотами распределения могут быть случайными и предположение о близости эмпирического распределения к нормальному не может быть отвергнуто.

^ 35. Понятие о выборочном наблюдении. Виды выборочного наблюдения.

Выборочное наблюдение относится к разновидности несплошного наблюдения. Оно охватывает отобранную часть единиц генеральной совокупности. Цель выборочного наблюдения - по отобранной части единиц дать характеристику всей совокупности единиц. Чтобы отобранная часть была репрезентативна (т.е. представляла всю совокупность единиц), выборочное наблюдение должно быть специально организовано. Следовательно, в отличие от генеральной совокупности, представляющей всю совокупность исследуемых единиц, выборочная совокупность представляет ту часть единиц генеральной совокупности, которая является объектом непосредственного наблюдения.

По понятным причинам выборочный метод может широко использоваться органами государственной статистики. Он позволяет при значительной экономии средств и затрат получать необходимую достоверную информацию. Гарантия репрезентативности обеспечивается применением научно обоснованных способов отбора единиц, которые подлежат обследованию.

По способу отбора (способу формирования) выборки единиц из генеральной совокупности распространены следующие виды выборочного наблюдения:

o простая случайная выборка (собственно-случайная);

o типическая (стратифицированная);

o серийная (гнездовая);

o механическая;

o комбинированная;

o ступенчатая.

Точностью статистического наблюдения называют степень соответствия величины какого-либо показателя (значение какого-либо признака), определенной по материалам статистического наблюдения, действительной его величине.

^ 36. Ошибки наблюдения, их виды, причины возникновения и способы расчета.

Расхождение между расчетным и действительным значением изучаемых величин называется ошибкой наблюдения.

На третьем этапе собранный статистический материал должен пройти контроль. Как показывает практика, даже при четко организованном статистическом наблюдении встречаются погрешности и ошибки, которые требуют исправления. Поэтому целью этого этапа является как счетный, так и логический контроль полученных первичных данных. В зависимости от причин возникновения различают ошибки регистрации и ошибки репрезентативности.

Ошибки регистрации могут быть случайными и систематическими. Случайные ошибки не имеют определенной направленности и возникают под действием случайных факторов (перестановка цифр, смещение строк и граф при заполнении статистического формуляра). При обобщении массового материала эти ошибки взаимопогашаются.

Систематические ошибки регистрации имеют определенную направленность, могут либо завышать, либо занижать конкретное значение показателя, что в итоге приводит к искажению действительного положения. Примерами систематической статистической ошибки при регистрации служат округление возраста населения на цифрах, заканчивающихся на 5 и 0, преуменьшение доходов в документации для налоговых органов, элементы недостоверности, которые вносят предприятия в те характеристики, от которых зависит расчет с кредиторами, и т.д.

Для выявления ошибок используется счетный контроль, особенно для проверки итоговых сумм. Помимо счетного используется и логический контроль, который может поставить под сомнение правильность полученных данных, поскольку основан на логической взаимосвязи между признаками. Например, при переписи населения полученный факт, что пятилетний ребенок имеет среднее образование, ставится под сомнение и в этом случае ясно, что при заполнении формуляра допущена ошибка.

Если ошибки регистрации свойственны любому наблюдению (сплошному и несплошному), то ошибки репрезентативности - только несплошному наблюдению. Они характеризуют расхождения между значениями показателя, полученного в обследуемой совокупности, и его значением по исходной (генеральной) совокупности. Ошибки репрезентативности также могут быть случайными и систематическими. Случайные ошибки возникают, если отобранная совокупность не полностью воспроизводит все признаки генеральной совокупности и величину этих ошибок можно оценить. Систематические ошибки репрезентативности могут возникать, если нарушен сам принцип отбора единиц из исходной совокупности. В этом случае проводятся проверка полноты собранных данных, арифметический контроль точности информации на предмет ее достоверности, проверка логической взаимосвязи показателей.
^ 37. Виды выборочного наблюдения по степени охвата единиц исследуемой совокупности (большие и малые выборки).

Формулы средней ошибки повторной простой случайной выборки, средней ошибки бесповторной случайной выборки, предельной ошибки повторной случайной выборки, предельной ошибки бесповторной случайной выборки, типической выборки, серийной выборки применимы для большой выборки.

^ Малая выборка.

Кроме большой выборки используются так называемые малые выборки (n < 30), которые могут иметь место в случаях нецелесообразности использования больших выборок.
При расчете ошибок малой выборки необходимо учесть два момента:
1) формула средней ошибки имеет вид



2) при определении доверительных интервалов исследуемого показателя в генеральной совокупности или при нахождении вероятности допуска той или иной ошибки необходимо использовать таблицы вероятности Стьюдента, где Р = S (t, n), при этом Р определяется в зависимости от объема выборки и t.

В статистике доказано, что даже в выборке весьма малого объема (20-30,

а иногда 4-5 единиц) позволяют получить приемлемые для анализа результаты.

Зависимость между величиной доверительного коэффициента t, а так же численностью малой выборки n с одной стороны, и вероятностью нахождения ошибки выборки в

заданных пределах с другой стороны. Эта зависимость получила название –

распределение Стьюдента.

^ 38. Виды выборочного наблюдения по способу формирования выборочной совокупности (собственно-случайная (простая случайная) выборка, типическая выборка.

Простая случайная выборка (собственно-случайная) есть отбор единиц из генеральной совокупности путем случайного отбора, но при условии вероятности выбора любой единицы из генеральной совокупности. Отбор проводится методом жеребьевки или по таблице случайных чисел.

Типическая (стратифицированная) выборка предполагает разделение неоднородной генеральной совокупности на типологические или районированные группы по какому-либо существенному признаку, после чего из каждой группы производится случайный отбор единиц.

^ 39. Виды выборочного наблюдения по способу формирования выборочной совокупности (серийная выборка, механическая выборка, комбинированная выборка).

Для серийной (гнездовой) выборки характерно то, что генеральная совокупность первоначально разбивается на определенные равновеликие или неравновеликие серии (единицы внутри серий связаны по определенному признаку), из которых путем случайного отбора отбираются серии и затем внутри отобранных серий проводится сплошное наблюдение.

^ Механическая выборка представляет собой отбор единиц через равные промежутки (по алфавиту, через временные промежутки, по пространственному способу и т.д.). При проведении механического отбора генеральная совокупность разбивается на равные по численности группы, из которых затем отбирается по одной единице.

Комбинированная выборка основана на сочетании нескольких способов выборки.

^ 40. Виды выборочного наблюдения по способу формирования выборочной совокупности (ступенчатая выборка, многофазная выборка).

Многоступенчатая выборка есть образование внутри генеральной совокупности вначале крупных групп единиц, из которых образуются группы, меньшие по объему, и так до тех пор, пока не будут отобраны те группы или отдельные единицы, которые необходимо исследовать.

Многофазная выборка – Она характеризуется тем, что так же, как и многоступенчатая выборка, включает несколько стадий отбора, но в отличие от последней на всех ее ступенях сохраняется одна и та же единица отбора. Каждая ступень отбора имеет свой объем выборки и свою программу наблюдения.

Похожие:

31. Показатели формы распределения (показатель асимметрии, эксцесса) iconВсеобщие исходные формы физического восприятия природы были определены...
Эти особенности можно определить и как наделённость свойством асимметрии и свойством симметрии. Формам пространственного соответствуют...
31. Показатели формы распределения (показатель асимметрии, эксцесса) iconСписок билетов для контрольной недели по курсу
Биномиальное распределение. Основные характеристики и предельные формы биномиального распределения
31. Показатели формы распределения (показатель асимметрии, эксцесса) iconВопросы к экзамену по теории вероятностей
Распределения сингулярного типа. Теорема о разложении функций распределения (без доказательства)
31. Показатели формы распределения (показатель асимметрии, эксцесса) iconНадежность работы электрооборудования и показатель mtbf
Важнейшей характеристикой любого электрооборудования, в том числе трансформаторов, является надежность его работы. Тем более этот...
31. Показатели формы распределения (показатель асимметрии, эксцесса) iconРегламент распределения и назначения стимулирующих выплат утверждается...
Стимулирующие выплаты не гарантированы всем работникам, они не могут быть уравнительными, и назначаются лишь за показатели, свидетельствующие...
31. Показатели формы распределения (показатель асимметрии, эксцесса) iconРегламент распределения и назначения стимулирующих выплат утверждается...
Стимулирующие выплаты не гарантированы всем работникам, они не могут быть уравнительными, и назначаются лишь за показатели, свидетельствующие...
31. Показатели формы распределения (показатель асимметрии, эксцесса) iconСтатистическое оценивание параметров распределения
Цель работы: Изучение методики статистического оценивания параметров распределения, освоение инструментов статистического анализа...
31. Показатели формы распределения (показатель асимметрии, эксцесса) iconРоль государственного регулирования в решении проблемы неравенства и распределения
Теоретические основы государственного регулирования неравенства и распределения благ в обществе 5
31. Показатели формы распределения (показатель асимметрии, эксцесса) iconО порядке распределения стимулирующей части фонда оплаты труда
Заринска Алтайского края от 29. 09. 2008 №274, Порядком распределения средств на стимулирование инновационной деятельности между...
31. Показатели формы распределения (показатель асимметрии, эксцесса) iconЦелевые показатели эффективности работы руководителей и работников...
Перечень критериев оценки и показатели эффективности руководителей и работников учреждений
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
dopoln.ru
Главная страница