Системы счисления”




НазваниеСистемы счисления”
страница1/5
Дата публикации17.10.2016
Размер9,76 Kb.
ТипПояснительная записка
  1   2   3   4   5


Муниципальное общеобразовательное учреждение
средняя общеобразовательная школа № 7


Экзаменационная работа по информатике
на тему:


Системы счисления”

Выполнил
ученик 11-А класса

Левченко А. С.

г. Новочеркасск

2006

Содержание

История развития систем счисления 3

Двоичные системы счисления 6

Двоичная арифметика 10

Формы представления чисел с фиксированной и плавающей запятой 13

Числа с фиксированной запятой 13

Числа с плавающей запятой 14

Позиционные системы счисления с произвольным основанием 16

Пояснительная записка к экзаменационной работе 17

Описание работы 17

Руководство пользования 19

Список используемой литературы 21
^

История развития систем счисления



Счисление, нумерация, - это совокупность приемов представления натуральных чисел. В любой системе счисления некоторые символы (слова или знаки) служат для обозначения определенных чисел, называемых узловыми, остальные числа (алгоритмические) получаются в результате каких – либо операций из узловых чисел. Системы счисления различаются выбором узловых чисел и способами образования алгоритмических, а с появлением письменных обозначений числовых символов системы счисления стали различаться характером числовых знаков и принципами их записи.

Наиболее совершенным принципом представления чисел является позиционный (поместный) принцип, согласно которому один и тот же числовой знак (цифра) имеет различные значения в зависимости от места, где он расположен. Такая система счисления основывается на том, что некоторое число n единиц (основание системы счисления) объединяются в одну единицу второго разряда, n единиц второго разряда объединяются в одну единицу третьего разряда и т. д. Основанием систем счисления может быть любое число, больше единицы. К числу таких систем относится современная десятичная система счисления (с основанием n=10). В ней для обозначения первых десяти чисел служат цифры 0,1,…,9.

Несмотря на кажущуюся естественность такой системы, она явилась результатом длительного исторического развития. Возникновение десятичной системы счисления связывают со счетом на пальцах. Имелись системы счисления и с другим основанием: 5.12 (счет дюжинами), 20 (следы такой системы сохранились во французском языке, например quatre – vingts, т. е. буквально четыре – двадцать, означает 80), 40, 60 и др. При вычислениях на ЭВМ часто применяется система счисления с основанием 2.

У первобытных народов не существовало развитой системы счисления. Еще в 19 веке у многих племен Австралии и Полинезии было только два числительных: один и два; сочетания их образовывали числа: 3 -–два – один, 4 – два – два, 5 – два – два – один и 6 – два – два – два. О всех числах, больших 6, говорили «много», не индивидуализируя их. С развитием общественно – хозяйственной жизни возникла потребность в создании систем счисления, которые позволяли бы и обозначать все большие совокупности предметов. Одной из наиболее древних систем счисления является египетская иероглифическая нумерация, возникшая еще за 2500 – 3000 лет до н. э. Это была десятичная непозиционная система счисления, в которой для записи чисел применялся только принцип сложения ( числа, выраженные рядом стоящими цифрами, складываются ). Специальные знаки имелись для единицы ,десяти ⋓,ста и других десятичных разрядов до . Число 343 записывалось так:
Аналогичными системами счисления были греческая геродианова, римская, сирийская и др.

Римские цифры – традиционное название знаковой системы для обозначения чисел, основанной на употреблении особых символов для десятичных разрядов:
I V X L C D M

1 5 10 50 100 500 1000

Возникла около 500 до н. э. у этрусков и использовалась в Древнем Риме; иногда употребляется и в настоящее время. В этой системе счисления натуральные числа записываются при помощи повторения этих цифр. При этом если большая цифра стоит перед меньшей, то они складываются (принцип сложения), если же меньшая – перед большей, то меньшая вычитается из большей (принцип вычитания). Последнее правило применяется только во избежания четырехкратного повторения одной и той же цифры. Например, I, X, C, ставятся соответственно перед X, C, M для обозначения 9, 90, 900 или перед V, L, D для обозначения 4, 40, 400.

Например, VI=5+1=6, IV=5-1=4 ( вместо IIII ), XIX=10+10-1=19 ( вместо XVIIII), XL=50-10=40 ( вместо XXXX ), XXXIII=10+10+10+1+1+1=33 и т. д. Выполнение арифметических действий над многозначными числами в этой системе весьма неудобно.

Более совершенными системами счисления являются алфавитные: ионийская, славянская, еврейская, арабская, а также грузинская и армянская. Первой алфавитной системой счисления была по–видимому, ионийская, возникшая в греческих колониях в Малой Азии в середине 5 века до н. э. В алфавитных системах счисления числа от 1 до 9, а также все десятки и сотни обозначаются, как правило, последовательными буквами алфавита (над которыми ставятся черточки, чтобы отличить записи чисел от слов). Число 343 в ионийской системе записывалось так: (здесь - 300, - 40, - 3).

Для обозначения чисел над буквами специальный знак титло (иногда над каждой буквой, иногда только над первой или же над всем числом). При записи чисел, больших 10, цифры писались слева направо в порядке убывания десятичных разрядов (однако иногда для чисел от 11 до 19 единицы записывались ранее десяти). Для обозначения тысяч перед числом их (слева внизу) ставился особый знак .

Для обозначения и наименования высших десятичных разрядов (более ) существовали две системы: «малое число» и «великое число»; в последнюю систему входили числа до или даже («боле сего несть человеческому уму разумевати»).

Славянские цифры до 18 века были основным цифровым обозначением в России.

В алфавитных системах счисления, запись чисел гораздо короче, чем в предыдущих; кроме того, над числами, записанными в алфавитной нумерации, гораздо легче производить арифметические действия. Однако в алфавитных системах счисления нельзя записывать сколь угодно большие числа. Греки расширили ионийскую нумерацию: числа 1000, 2000,…,9000 они обозначали теми же буквами, что и 1,2,…,9, но ставили штрих внизу слева: так, обозначала 1000, - 2000 и т. д. Для 10 000 был введен новый знак . Тем не менее ионийская система счисления оказалась непригодной уже для астрономических вычислений эпохи эллинизма, и греческие астрономы того времени стали комбинировать алфавитную систему с шестидесятеричной вавилонской – первой известной нам системой счисления, основанной на позиционном принципе. В системе счисления древних вавилонян, возникшей примерно за 2000 лет до н. э. все числа записывались с помощью двух знаков: (для единицы) и (для десяти). Числа до 60 записывались как комбинации этих двух знаков с применением принципа сложения. Число 60 снова обозначалось знаком, являясь единицей высшего разряда. Для записи чисел от 60 до 3600 вновь применялся принцип сложения, а число 36 000 обозначалась тем же знаком, что и единица, и т. д. Число 343=5*60+4*10+3 в этой системе записывалось так.

Однако в силу отсутствия знака для нуля, которым можно было бы отмечать недостающие разряды, запись чисел в этой системе счисления не была однозначной. Особенностью вавилонской системы счисления было то, что абсолютное значение чисел оставалось неопределенным.

Другая система счисления основанная на позиционном принципе, возникла у индейцев майя, обитателей полуострова Юкатан ( Центральная Америка) в середине 1 – го тыс. н. э. У майя существовали две системы счисления: одна, напоминающая египетскую, употреблялась в повседневной жизни, другая – позиционная, с основанием 20 и особым знаком для нуля, применялась при календарных расчетах. Запись в этой системе, как и в нашей современной, носила абсолютный характер.

Современная десятичная позиционная система счисления возникла на основе нумерации, зародившейся не позднее 5 в. в Индии. До этого в Индии имелись системы счисления, в которых применялся не только принцип сложения, но и принцип умножения ( единица какого–нибудь разряда умножается на стоящее слева число). Аналогично строились старокитайская система счисления и некоторые другие. Если, например, условно обозначить число 3 символом III, а число 10 символом X, то число 30 запишется как IIIX ( три десятка ). Такие системы счисления могли служить подходом к созданию десятичной позиционной нумерации.

Десятичная позиционная система дает принципиальную возможность записывать сколь угодно большие числа. Запись чисел в ней компактна и удобна для производства арифметических операций. Поэтому вскоре после возникновения десятичная позиционная система счисления начинает распространяться из Индии на Запад и Восток. В 9 веке появляются рукописи на арабском языке, в которых излагается эта система счисления, в 10 веке десятичная позиционная нумерация доходит до Испании, в начале 12 века она появляется и в других странах Европы. Новая система счисления получила название арабской, потому что в Европе с ней познакомились впервые по латинским переводам с арабского. Только в 16 веке новая нумерация получила широкое распространение в науке и житейском обиходе. В России она начинает распространяться в 17 веке и в самом начале 18 в. вытесняет алфавитную. С введением десятичных дробей десятичная позиционная система счисления стала универсальным средством для записи всех действительных чисел.
  1   2   3   4   5

Похожие:

Системы счисления” iconСистемы счисления позиционные системы счисления
Число таких знаков в позиционной системе счисления называется основанием системы счисления. Ниже приведена табл. 4, содержащая наименования...
Системы счисления” iconТема: Путешествие в историю чисел. Обозначение чисел и счёт в Древнем Египте
Цели и задачи урока: Познакомиться с историей возникновения и развития систем счисления. Сформировать понятие позиционные системы...
Системы счисления” iconПредставление числовой информации в различных системах счисления....
Умк: Н. Д. Угринович (можно использовать умк и других авторов, а мультимедийное приложение применять на уроках математики)
Системы счисления” iconУрок «Двоичная система счисления»
Основные понятия: система счисления, позиционная система счисления, непозиционная система счисления
Системы счисления” iconТема: Системы счисления и двоичное представление информации в памяти компьютера
Даны 4 числа, они записаны с использованием различных систем счисления. Укажите среди этих чисел то, в двоичной записи которого содержится...
Системы счисления” iconПредставление о системах счисления
Система счисления(далее сс) совокупность приемов и правил для записи чисел цифровыми знаками
Системы счисления” iconВопросы к зачету
Представление чисел. Системы счисления (двоичная, восьмеричная, шестнадцатеричная и др.)
Системы счисления” iconУрок» Номинация «Информатика» Тема «Системы счисления используемые в эвм»
Умк: учебник Информатика и информационные технологии 10- 11 классы. Н. Д. Угринович. – М.: Бином. Лаборатория знаний, 2006 г
Системы счисления” iconЛекция 1: Введение в информатику. Представление и кодирование информации. Системы счисления
В процессе научно-практической деятельности человечество выделило такие обобщенные абстрактные понятия, как вещество(материя), энергия...
Системы счисления” iconПояснительная записка. Количество часов на курс: 12. Тип курса
Связать воедино такие темы информатики, как системы счисления, алгебру логики и кодирование информации, ориентировать на дальнейшее...
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
dopoln.ru
Главная страница